My guilty pleasures.

Dan Fretwell

University of Sheffield (daniel.fretwell@sheffield.ac.uk)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Congruences of local origin

The original Ramanujan congruence:

 $\tau(n) \equiv \sigma_{11}(n) \mod 691$

follows from the fact that $\operatorname{ord}_{691}\left(\frac{\zeta(12)}{\pi^{12}}\right) > 0$.

Question: Can we generate congruences between level 1 and level *p*?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Congruences of local origin

The original Ramanujan congruence:

 $\tau(n) \equiv \sigma_{11}(n) \mod 691$

follows from the fact that $\operatorname{ord}_{691}\left(\frac{\zeta(12)}{\pi^{12}}\right) > 0$.

Question: Can we generate congruences between level 1 and level *p*?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dummigan, D.

Let $k \ge 4$ be even and p be prime. If l > 3 is a prime such that $\operatorname{ord}_l\left((p^k - 1)\frac{B_k}{2k}\right) > 0$ then there exists a normalized eigenform $f \in S_k(\Gamma_0(p))$ with Hecke eigenvalues a_n satisfying:

$$a_q \equiv 1 + q^{k-1} \mod \lambda$$
 for $q \neq p$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where $\lambda \mid I$ in \mathbb{Q}_f .

We can generate infinite families of such congruences if p = 2and *I* is a Mersenne prime $M_{p_0} = 2^{p_0} - 1$.

Dummigan, D.

Let $p_0 > 2$ be prime and pick any *m* such that $\frac{M_{p_0}-1}{2p_0} \nmid m$. Then there exists $f \in S_{2mp_0}(\Gamma_0(2))$ with:

$$a_q \equiv 1 + q^{2mp_0-1} \mod \lambda$$
 for $q \neq p$,

where $\lambda \mid M_{p_0}$ in \mathbb{Q}_f .

This is good computationally...if $p_0 > 3$ we can always take m = 1. Also the weight/level is small relative to the modulus.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

We can generate infinite families of such congruences if p = 2 and *I* is a Mersenne prime $M_{p_0} = 2^{p_0} - 1$.

Dummigan, D.

Let $p_0 > 2$ be prime and pick any *m* such that $\frac{M_{p_0}-1}{2p_0} \nmid m$. Then there exists $f \in S_{2mp_0}(\Gamma_0(2))$ with:

$$a_q \equiv 1 + q^{2mp_0-1} \mod \lambda$$
 for $q \neq p$,

where $\lambda \mid M_{p_0}$ in \mathbb{Q}_f .

This is good computationally...if $p_0 > 3$ we can always take m = 1. Also the weight/level is small relative to the modulus.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

We can generate infinite families of such congruences if p = 2 and *I* is a Mersenne prime $M_{p_0} = 2^{p_0} - 1$.

Dummigan, D.

Let $p_0 > 2$ be prime and pick any *m* such that $\frac{M_{p_0}-1}{2p_0} \nmid m$. Then there exists $f \in S_{2mp_0}(\Gamma_0(2))$ with:

$$a_q \equiv 1 + q^{2mp_0-1} \mod \lambda$$
 for $q \neq p$,

where $\lambda \mid M_{p_0}$ in \mathbb{Q}_f .

This is good computationally...if $p_0 > 3$ we can always take m = 1. Also the weight/level is small relative to the modulus.

We can generate infinite families of such congruences if p = 2 and *I* is a Mersenne prime $M_{p_0} = 2^{p_0} - 1$.

Dummigan, D.

Let $p_0 > 2$ be prime and pick any *m* such that $\frac{M_{p_0}-1}{2p_0} \nmid m$. Then there exists $f \in S_{2mp_0}(\Gamma_0(2))$ with:

$$a_q \equiv 1 + q^{2mp_0-1} \mod \lambda$$
 for $q \neq p$,

where $\lambda \mid M_{p_0}$ in \mathbb{Q}_f .

This is good computationally...if $p_0 > 3$ we can always take m = 1. Also the weight/level is small relative to the modulus.